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Abstract – 

Obtaining accurate information of defective areas 

of infrastructures helps to perform repair actions 

more efficiently. Recently, LiDAR scanners are used 

for the inspection of surface defects. Moreover, 

machine learning methods have attracted the 

attention of researchers for semantic segmentation 

and classification based on point cloud data. Although 

much work has been done in the area of computer 

vision based on images, research on machine learning 

methods for point cloud semantic segmentation is still 

in its early stages, and the current available deep 

learning methods for semantic segmentation of the 

concrete surface defects are based on converting point 

clouds to images or voxels. This paper proposes an 

approach for detecting concrete surface defects (i.e. 

cracks and spalls) using a Dynamic Graph 

Convolutional Neural Network (Dynamic Graph 

CNN) model. The proposed method is applied to a 

point cloud dataset from four concrete bridges in 

Montreal. The experimental results show the 

usefulness and robustness of the proposed method in 

detecting concrete surface defects from 3D point 

cloud data. Based on the sensitivity analysis of the 

model using three cases defined with different 

number of input points, the best test results show the 

detection recall for cracks and spalls are 55.20% and 

89.77%, respectively. 
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1 Introduction 

Many of the old infrastructures that are near the end 

of their service life are still in use, which increases the 

need for regular inspection of these structures [1, 2]. 

Advanced technologies (e.g. LiDAR scanners, sensors) 

have made the inspection process more accurate and 

reliable [3, 4]. These technologies, such as LiDAR 

scanning, are a promising alternative to traditional visual 

inspection, which is unsafe, labor-intensive, costly, and 

subject to human errors [5]. Although much work has 

been done for processing images using computer vision, 

research on machine learning methods for point cloud 

semantic segmentation is still in its early stages [6]. 

Image-based methods have limitations, such as the need 

for appropriate lighting conditions and additional 

information to analyze images (such as focal length), and 

may also fail to analyze more complex geometric 

surfaces [7, 8, 9]. Furthermore, using the methods that are 

not applying raw point clouds as input will increase the 

dataset size by converting the point cloud to other data 

formats, resulting in missing information or causing 

heavy computing [6, 10]. Deep learning is one of the 

most effective machine learning techniques, which uses 

more than two hidden layers in order to acquire high-

dimensional features from the training data [11, 12]. So 

far, deep learning with images has achieved acceptable 

results by learning complex structures. Currently, 

researchers are adapting these methods by using point 

cloud data as raw input.  

In order to automate the inspection process, this paper 

proposes an approach using the 3D semantic 

segmentation technique by adapting a Dynamic Graph 

Convolutional Neural Network (Dynamic Graph CNN) 

model. The main purpose of the automated inspection 

process in this paper is to detect concrete surface defects, 

including cracks and spalls. The proposed method mainly 

consists of five steps: (1) data collection, (2) manual 

annotation, (3) data pre-processing, (4) training and 

evaluation, and (5) testing. 

The rest of the paper is structured as follows: Section 

2 contains the literature review. The methodology is 

explained in Section 3. Section 4 shows a case study and 

experimental results. Finally, the conclusions and future 

work are presented in Section 5. 

2 Literature Review 

2.1 LiDAR-based Defect Detection 

LiDAR scanning is a non-contact measurement 
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technology that has proven its potential in capturing 

accurate and instant point cloud data from object surfaces 

[1, 13]. However, the resolution and noise level of point 

cloud data pause some challenges in detecting small 

cracks [14]. Therefore, to overcome this limitation, an 

additional feature, which is the RGB color, is considered 

in deep learning models [5, 6]. 

Laefer et al. [9] used fundamental mathematics to 

define the smallest width of unit-based masonry cracks, 

which can be detected with terrestrial laser scanner by 

considering the main parameters of depth and orientation 

of crack, orthogonal offset, and interval scan angle. Anil 

et al. [15] focused on the performance of laser scanners 

by using an automated algorithm on point cloud data 

from reinforced concrete surfaces and asserted the 

possibility of detecting 1 mm crack based on point cloud 

data. Xu and Yang [16] used the Gaussian filtering 

method and image-generated data from the point cloud to 

detect the cracks of a concrete tunnel structure. Teza et al. 

[17] proposed an automatic method for the inspection of 

damaged areas of concrete bridge surfaces using a laser 

scanner and Gaussian mean curvature computation. 

Makuch and Gawronek [18] proposed an automatic 

inspection system for reinforced concrete cooling tower 

shells using point cloud data and local surface curvature 

computation. Olsen et al. [19] proposed using cross 

sectional analysis to detect surface damage based on laser 

scanner data. Liu et al. [20] utilized the distance and 

gradient-based method to detect the defective area of 

bridge surfaces using laser scanner data. Valença et al. 

[21] proposed a method combining image processing and 

terrestrial laser scanning technology to automate the 

process of capturing the geometrical characteristics of 

cracks on concrete bridges. Kim et al. [22] proposed a 

technique to indicate the location and measure the 

quantity of concrete surface spalling defects larger than 3 

mm using laser scanner data. Truong-Hong et al. [13] 

presented an approach to detect the bridge cracks using a 

terrestrial laser scanner and developed a tool to measure 

the length and width of cracks based on point cloud data 

and RGB color produced from an external camera. Tsai 

et al. [23] assessed the probability of using point cloud 

data to detect cracks with the dynamic-optimization-

based segmentation method and assessing the crack 

segmentation performance using the linear-buffered 

Hausdorff scoring method. Cabaleiro et al. [24] 

developed an automatic crack detection algorithm using 

LiDAR data for timber beams inspection to identify the 

crack geometrical characteristics. Mizoguchi et al. [25] 

proposed a customized region-growing algorithm along 

with an iterative closest point algorithm to detect the 

surface defects of concrete structures based on laser 

scanner data. Nasrollahi et al. [26] proposed a method for 

detecting concrete surface defects based on collecting 

point cloud data from LiDAR scanners and using a Deep 

Neural Network (DNN). Guldur and Hajjar [27] 

developed damage detection algorithms for automatic 

surface normal-based defect detection and quantification 

using LiDAR scanner data. 

2.2 Dynamic Graph CNN 

DNNs or deep feedforward networks utilize multiple 

deep layers along with highly optimized algorithms to 

learn from trained data sets without the process of manual 

feature extraction [28]. A CNN is a class of DNNs 

containing input, convolutional, subsampling, and output 

layers [29]. 

Dynamic Graph CNN, proposed by Wang et al. [30], 

is a new point-based CNN suitable for high-level tasks, 

such as object classification and semantic segmentation. 

Dynamic Graph CNN can improve capturing local 

geometric functions as it creates a local neighborhood 

graph and dynamically updates the graph with the nearest 

neighbors after each layer of the network. Rather than 

operating on individual points, the model iteratively 

performs convolution on edges associating the 

neighborhood point pairs. The operation layer for edge 

feature generation is called EdgeConv, which defines the 

relationships between a point and its neighbors. Figure 1 

shows the mechanism of Dynamic Graph CNN edge 

feature generation. As shown in Figure 1(a), Xi and  Xj  are 

a point pair, and eij is hθ(Xi, Xj), which is the edge feature 

function; h is the function parameterized by the set of 

learnable parameters θ. Figure 1(b) shows the channel-

wise symmetric aggregation operation on the edge 

features associated with all the edges originating from 

each vertex, where Xi
’
 is the EdgeConv operation, which 

is defined by applying asymmetric aggregation operation 

at the i-th vertex. The segmentation model of Dynamic 

Graph CNN involves a series of three EdgeConv layers 

and three fully connected layers. The parameter k in the 

model is the number of the edge features for each point, 

which is computed in each EdgeConv layer for the input 

of n points. 

3 Methodology 

Dynamic Graph CNN, originally designed to detect 

indoor building elements, is modified and adapted to 

automate the inspection process of concrete surface 

defects, including cracks and spalls. This model is 

selected because it considers the edge feature, which is 

the most valuable feature in concrete surface defects 

detection. Figure 2 shows the proposed method for 3D 

point cloud-based concrete surface defects detection. 

The following five main steps are used to automate 

the inspection process of concrete surface defects:  

(1) Data collection: The geometric features of defects, 

particularly the depth, play a significant role in extracting 
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important features and having practical results. Therefore, 

data collection is an important step and has to be done 

accurately. The scanner position and the scanning 

parameters, such as resolution, quality, Field of View 

(FOV), and the number of scanned points, are the factors 

that can affect the visibility of defects in the collected 

point cloud data. 

 

 

 

(a) Computing an edge feature eij from a neighboring 

point pair Xi, Xj  

 
(b) Channel-wise asymmetric aggregation operation on 

the edge features associated with all the edges 

originating from each vertex  

 

Figure 1. Mechanism of Dynamic Graph CNN edge 

feature generation [30] 

(2) Manual 3D point cloud annotation: After data 

collection, the selected parts need to be manually 

annotated based on the types of targeted surface defects. 

In this paper, two main types of surface defects, which 

are cracks and spalling, are considered. Each part of the 

dataset is annotated into three categories of crack, 

spalling, and non-defect. 

(3) Data pre-processing: The annotated dataset is 

prepared and augmented by adding flipped data. The 

original dataset files are converted into data label files, 

which are 2D matrices with XYZRGBL in each line. Then, 

each part is split into blocks, and for each block, 

normalized location values on the Y surface are added 

[30]. Each point is represented as a 7D vector of XYZ, 

RGB, and Ny. The normalized location values over X and 

Z directions are not considered as the depth of defects is 

in the direction of the Y-axis, and normalized location 

values over X and Z directions are not valuable and 

mislead the network’s learning process. The sizes of 

blocks are defined based on the sizes of the structural 

defects in the dataset. Hence, the selected block sizes in 

the data pre-processing step are assumed to be less than 

40 cm × 40 cm on the XZ surface, with the depth of the 

defects as the third dimension, which is equal to the depth 

of the deepest defect in each segment.  Moreover, in this 

step, the wrapped and normalized points inside the blocks 

are converted to Hierarchical Data Format (HDF) [31], 

and HDF5 files are used for the training process in the 

next step. 

(4) Training and evaluation: As discussed in Section 

2.2, a series of three EdgeConv layers followed by three 

fully-connected layers are included in the segmentation 

model of Dynamic Graph CNN, and the number of the k-

nearest neighbors of a point for EdgeConv layers is 

specified for the input of n points in the model. In the 

adapted Dynamic Graph CNN, the input points variables 

are changed from a 9-dimensional vector to a 7-

dimensional vector by removing the normalized location 

values of the x-axis and z-axis, and the network is fed by 

7-dimensional input data. As the defect’s numbers of 

points in this paper are less than the non-defect number 

of points, which is known as the issue of “imbalanced 

datasets”, a weighted softmax loss function is utilized to 

adapt the model to our prepared dataset, and the 

corresponding weight vector is set based on the points 

distribution among the three classes. 

(5) Testing: To validate the model accuracy, the unseen 

parts of the dataset, which are not used in Step 4, are used 

for the testing step. The confusion matrix is used to 

describe the model’s performance using the equations 

presented in Table 1. In this paper, the term “overall 

accuracy” refers to the percentage of correct predictions 

for the test data. Furthermore, the recall is assumed to be 

more relevant than precision as the process of concrete 

surface inspection aims to minimize the chance of 

missing actual defect points, which can be achieved by 

minimizing the “False Negative” prediction of the model. 

4 Case Study and Implementation 

This paper used point cloud datasets from four reinforced 

concrete bridges in Montreal, scanned using a FARO  
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Table 1. Model Performance metrics 

Performance 

metrics 

Equation 

Precision 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score 
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Intersection over 

Union (IoU) 

𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

Overall accuracy 

𝑇𝑃𝐶𝑟𝑎𝑐𝑘 + 𝑇𝑃𝑆𝑝𝑎𝑙𝑙 + 𝑇𝑃𝑐𝑟𝑎𝑐𝑘

𝐴𝑙𝑙 𝑝𝑒𝑟𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
 

Note: TP refers to true positives, FP refers to false 

positives, and FN refers to false negatives 

Focus3D scanner [32]. Table 2 shows the scanning 

parameters. Furthermore, CloudCompare software [33] 

is used to register and eliminate the irrelevant points of 

the point cloud data. The scanning process in this step is 

affected by several factors, such as the battery capacity 

and performance limitations, especially in severe weather 

conditions, scanning time, and traffic constraints.  For 

this reason, different settings, including different 

numbers of stations, were used to scan each of the bridges. 

In some scans, the FOV was reduced to avoid scanning 

irrelevant objects (e.g. moving vehicles). 

 The prepared dataset includes 102 selected segmented 

parts from the scanned bridges. The number of annotated 

cracks in the selected parts is 595, and the number of 

annotated spalls is 773. The annotation process is done 

manually in CloudCompare software using the following 

rules based on experience: (1) a specific range of 150,000 

pts to 400,000 pts is considered for the number of points 

of each selected part; (2) the scanned surfaces are 

classified into rectangular parts because of the box shape 

of the blocks in the model; and (3) the part size should 

consider the higher density of points in some parts and it 

should not contain more than the maximum defined 

number of points, which is 400,000 pts.  The annotated 

datasets are split into five areas. Area 1 to 3 are used for 

training, Area 4 is used for evaluation, and Area 5 is 

dedicated to testing. The X-axis is set along the concrete 

surface, the Z-axis is set in the vertical direction of the 

canonical coordinate system, and the Y-axis is set 

perpendicular to the surface and in the direction of the 

depth of the defects. The depth of defects is set to have 

positive Y values. Furthermore, in this paper, to enlarge 

the size of the dataset, the augmenting method of flipping 

the point cloud data is used. In this regard, the annotated 

parts are flipped with respect to the YZ plane. The total 

number of segmented parts after adding the flipped data 

is 204 parts. The statistical information of the dataset, 

including the flipped data, is given in Table 3. 

Wang et al. [30] used the block size of 1 m × 1 m on the 

XY surface for rooms with a height of 3 m to detect indoor 

building elements. The number of points of 4,096 is used 

for their training process. This setting results in a very 

low density of points for detecting most types of defects 

in this paper (e.g. medium-sized spalls). In the adapted 

Dynamic Graph CNN, the block size of 40 cm × 40 cm is 

set based on the sizes of the structural defects in the 

dataset. Moreover, the density of points in each block is 

increased by raising the number of points. This paper 

defines three cases with different number of input points 

of 8,192, 10,240, and 12,288, which are sampled for each 

block during the training process. 

 

Figure 2. Proposed method for 3D point cloud-based defect detection 
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The number of the k-nearest neighbors of a point for 

EdgeConv layers is set equal to 20 following the 

suggested value by Wang et al. [30].  

The training and evaluation results, including the 

overall accuracy and mean loss of defined cases, are 

presented in Table 4. Precision, recall, F1 score, IoU, and 

overall accuracy are calculated to evaluate detection 

results for the defined cases. The test results from the 

three samples of 3D point cloud semantic segmentation 

of adapted Dynamic Graph CNN are shown in Figure 3. 

The test results (Table 5) show the detecting recall for 

cracks for spalls for Case A (8,192 points) are 55.20% 

and 89.77%, respectively. Increasing the number of 

points from 8,192 to 12,288 improved the crack detection 

recall from 55.20% to 58.67%. However, this increase 

resulted in decreasing the spall recall from 89.77% to 

87.40%, and non-defect recall from 97.17% to 96.64%. 

This is because increasing the number of points 

sometimes can cause overfitting. 

Furthermore, as the depth of each segmented part are 

different, and the learning process depends on the 

maximum depth of the part’s defects, the recall result of 

the tests is categorized based on the depth of segmented 

parts used in the test. As shown in Table 6, the parts with 

more than 7 cm depth can increase recall up to 80.04% 

for crack and 93.33% for spall. 

5 Conclusions and Future Work 

This paper proposes an approach using the 3D 

semantic segmentation technique and a modified 

Dynamic Graph CNN model to automate the inspection 

process of concrete surface defects, including cracks and 

spalls. The prepared dataset includes 204 segmented 

parts from four scanned concrete bridges in Montreal. 

Three types of segments (i.e. crack, spall, and non-defect) 

are annotated in the training dataset. The performance of 

the network is improved by modifying the setting of the 

network (e.g. modifying the loss function) and by 

augmenting the dataset (i.e. by flipping the point cloud 

data). 

The case study shows the usefulness and robustness 

of the proposed method in detecting concrete surface 

defects from 3D point cloud data. The best test results 

show the detection recall for cracks and spalls are 55.20% 

and 89.77%, respectively. 

The small size of the dataset is one of the main 

limitations of this paper, and a larger dataset is expected 

to improve the learning process resulting in better 

performance and accuracy of the model. Moreover, due 

to computing resource limitation (i.e. memory and 

processors limitation), it was not possible to study the 

effect of increasing the number of input points of the 

model to more than 12,288 and increasing the density of  

sampled points in each block by reducing the size of each      

Table 2. Scanning parameters of four scanned bridges in Montréal 

Scans Number of 

Stations 

Resolution Quality Horizontal 

FoV 

Vertical  

FoV 

Number of 

Points (Mpts) 

Bridge 1 Scan 1 8 1/4 6x 23° to 259° -42.5° to 71° 25.5 

Scan 2 4 1/4 6x 23° to 259 ° -42.5° to 71° 25.5 

Bridge 2 Scan 3 6 1/1 2x 0° to 360° -60° to 90° 710.7 

Bridge 3 Scan 5 4 1/2 4x 0° to 360° -45° to 71° 134.5 

Bridge 4 Scan 6 2 1/2 4x 0° to 360° -60° to 90° 177.7 

Table 3. The statistics of the prepared dataset 

Dataset 

Number of 

segmented 

parts 

Number of 

points 

Defects Non-defects 

Crack Spalling 
Number of 

points 
Number 

of cracks 

Number 

of points 

Number 

of spalls 

Number 

of points 

Training 

(59.5%) 

Area 1 32 10,418,902 264 104,256 226 715,768 9,598,878 

Area 2 44 11,003,768 334 112,436 266 282,822 10,608,510 

Area 3 42 10,651,316 160 67,714 356 744,356 9,839,246 

Evaluation 

(19.6%) 
Area 4 44 10,552,584 192 80,454 328 762,156 9,709,974 

Testing 

(20.9%) 
Area 5 42 11,257,240 240 128,538 370 1,365,228 9,763,474 

Total 204 53,883,810 1,190 493398 1,546 3,870,330 49,520,082 

 

383



38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

 

 

Table 4. Training and evaluation results 

Case 

Number of 

sampled points 

for each block 

Block 

size (cm) 

Training Evaluation 
Training 

time Mean loss 
Overall 

accuracy (%) 
Mean loss 

Overall 

accuracy (%) 

A 8,192 40×40 0.0022 97.54 0.0081 97.50 13h 44m 

B 10,240 40×40 0.0024 97.39 0.0090 97.65 16h 35m 

C 12,288 40×40 0.0030 97.04 0.0082 96.88 20h 18m 

Table 5. Testing results (%) 
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A 95.94 69.98 55.20  61.76 44.68 79.30 89.77 84.2 72.72 98.54 97.17 97.85 95.79 

B 95.59 68.95 55.31 61.38 44.28 77.47 89.41 83.0 71.0 98.48 96.82 97.64 95.39 

C 95.24 49.73 58.67 53.83 36.83 77.00 87.40 81.9 69.3 98.48 96.64 97.55 95.22 

 

 
 Sample 1 Sample 2 Sample 3 

Original 

Segmented 

part 

   

Manual 

Annotation 

   

Adapted 

Dynamic 

Graph 

CNN 

   

Figure 3. Test results from three samples of 3D point cloud semantic segmentation 
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block. Future work will focus on collecting and preparing 

more data to enlarge the dataset. The proposed method 

can also be applied to other types of concrete surface 

defects and other types of material surfaces. 
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